欢迎来到高中生网资源网!

点乘和叉乘运算法则

高中学习 时间:2019-12-20 14:59:08
  点乘,也叫向量的内积、数量积。运算法则为向量a·向量b=|a||b|cos<a,b>叉乘,也叫向量的外积、向量积。运算法则为|向量c|=|向量a×向量b|=|a||b|sin<a,b>。
点乘和叉乘运算法则
    点乘,也叫向量的内积、数量积。运算法则为向量a·向量b=|a||b|cos<a,b>叉乘,也叫向量的外积、向量积。运算法则为|向量c|=|向量a×向量b|=|a||b|sin<a,b>。

    

运算法则

    点乘    点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。

    向量a·向量b=|a||b|cos<a,b>

    在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。

    叉乘    叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。

    |向量c|=|向量a×向量b|=|a||b|sin<a,b>

    向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。

    因此向量的外积不遵守乘法交换率,因为向量a×向量b=-向量b×向量a在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。

    

几何意义

    点乘的几何意义    可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影。

    叉乘的几何意义    在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。

    在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。
热门文章