欢迎来到高中生网资源网!

2018江西高考理科数学试题及答案解析【Word真题试卷】

高中学习 时间:2019-12-03 17:33:09
  2018江西高考理科数学试题及答案解析【Word真题试卷】
2018江西高考理科数学试题及答案解析【Word真题试卷】
    
     

    温馨提示:由于排版问题,全屏查看效果更佳!

    绝密★启用前

    2018年普通高等学校招生全国统一考试

    理科数学

    注意事项:

    1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。

    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚

    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效

    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

    5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀

     

    一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

     

    一、选择题

    1

    设则(   )

    A.????????????? ????????????? B.????????????? ????????????? C.????????????? ????????????? D.

    2已知集合 ,则(   )

    A.

    B.

    C.

    D.

    3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。为更好地了解该地区农村的经济收入变化情况,统计了该地区系农村建设前后农村的经济收入构成比例。得到如下饼图:

    则下面结论中不正确的是(   )

    A.新农村建设后,种植收入减少

    B.新农村建设后,其他收入增加了一倍以上

    C.新农村建设后,养殖收入增加一倍

    D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

    4记为等差数列的前项和,若,则(   )

    A.-12        B.-10        C.10         D.12

    5设函数,若为奇函数,则曲线在点处的切线方程为(   )

    A.????????????? ????????????? ????????????? B.

    C.????????????? ????????????? ????????????? D.

    6 在中,为边上的中线,为的中点,则(   )

    A.????????????? ????????????? ????????????? B.

    C.????????????? ????????????? ????????????? D.

    7某圆柱的高为2,底面周长为16,其三视图如下图。圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为(   )

    A.????????????? ????????????? ????????????? B.????????????? ????????????? ????????????? C.????????????? ????????????? ????????????? D.

    8 设抛物线的焦点为,过点且斜率为的直线与交于两点,则(  )

    A.5          B.6          C.7          D.8

    9 已知函数,,在存在个零点,则的取值范围是(   )

    A.????????????? ????????????? ????????????? B.????????????? ????????????? ????????????? C.????????????? ????????????? ????????????? D.

    10下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个车圈构成,三个半圆的直径分别为直角三角形的斜边,直角边.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ 、Ⅱ 、Ⅲ的概率分别记为,则(   )

    A.????????????? ????????????? ????????????? B.????????????? ????????????? ????????????? C.????????????? ????????????? ????????????? D.

    11已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为若为直角三角形,则(   )

    A.????????????? ????????????? ????????????? B.????????????? ????????????? ????????????? C.????????????? ????????????? ????????????? D.

    12已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为(   )

    A.????????????? ????????????? ????????????? B.????????????? ????????????? ????????????? C.????????????? ????????????? ????????????? D.

    二、填空题

    13若满足约束条件则的最大值为        。

    14记为数列的前n项的和,若,则        。

    15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种.(用数字填写答案)

    16已知函数,则的最小值是        。

    三、解答题

    17

    在平面四边形中,

    1.求;

    2.若求

    18如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.

    1. 证明:平面平面;

    2.求与平面所成角的正弦值

    19 设椭圆的右焦点为,过得直线与交于两点,点的坐标为.

    1.当与轴垂直时,求直线的方程;

    2.设为坐标原点,证明:

    20某工厂的某种产品成箱包装,每箱产品在交付用户前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验。设每件产品为不合格的概率为品(),且各件产品是否为不合格品相互独立

    1.记20件产品中恰有2件不合格品的概率为,求的最大值点

    2.现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的  作为的值。已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用

    ①若不对该箱余下的产品作检验,这一箱的检验费用与赔偿费用的和记为,求;

    ②检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?    

    21已知函数

    1.讨论的单调性;

    2.若存在两个极值点,证明:

    22[选修4—4:坐标系与参数方程]

        在直角坐标系中,曲线的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为    

    1.求的直角坐标方程

    2. 若与有且仅有三个公共点,求的方程

    23[选修4—5:不等式选讲]

    已知    

    1.当时,求不等式的解集

    2.若时,不等式成立,求的取值范围

    参考答案

     

    一、选择题

    答案: C

    解析: ,,故选C

    答案: B

    解析: 由题得=或,故,故选B

    3.答案:A

    解析:设建设前总经济收入为则建设后总经济收入为

    对于,建设前种植收入为,建设后种植收入为故借误:

    对于,建设前其他收入为,建设后其他收入为,故正确

    对于,建设前养殖收入为,建设后养殖收入为,故正确:

    对于,建设后,养殖收入占,第三产业收入占,故正确:

    答案: B

    解析: 由为等差数列,且,故有,即又由,故可得,故,故选B

    答案: D

    解析: 因为是奇函数,所以,即解得,所以,故切线方程为:,故选D

    答案: A

    解析: 由是边上的中线,为的中点,故,故选A

    答案: B

    解析:

    如图,最小路径,故选B

    答案: D

    解析: 由直线过点且斜率为故可得直线为,联立直线与抛物线,解得或,故可设,则.又由抛物线焦点,故,,所以,故选D

    答案: C

    解析: 有两个零点等价于与有两个交点,由图可知,当,即时,与有两个交点,故选C

    答案: A

    解析: 假设,由三角形是直角三角形,故有,即,即有,故区域Ⅰ的面积为,区域Ⅱ的面积为,区域Ⅲ的面积为又由于总区域固定,故·即选A

    答案: B

    解析:

    在中,

    在中,

    答案: A

    解析: 如图所示平面与平面的所有棱缩成角都相等

    故平面,构造平面平面

    设,则,

    故=

    当时

    二、填空题

    答案:

    解析: 作出约束区域如图所示,

    目标函数化为

    当直线经过时有最大截距,且此时取得最大值。

    故当时取得最大值

    答案:

    解析: 由题意,当时,,解得

    当时

    化简得

    故是以为首项,为公比的等比数列,因此

    15.答案:16

    解析:在人中任选人的选法总共有种;选出的人劝慰男生的选法共有种

    故至少有一位女生入选的选法共有种

    答案:

    解析: 显然,故是以为周期的函数

    又

    故当,即时,单调递增

    当,即时,单调递减

    所以时,取得最小值

    不妨令,取代入得

    三、解答题

    答案: 1.在中,由正弦定理可知:∴∴

    由得∵∴

    2.∵,

    又由余弦定理知:

    解得:∴

    答案: 1.证明:∵分别为的中点,四边形为正方形∴∴∵,∴

    而:∴平面,而平面,∴平面平面

    2.记正方形边长为则:,且由翻折的性质可知:

    ∴过作于连接,由1知:平面平面,平面平面,∴平面,∴即为与平面所成的角.记,则,∴,在中,由勾股定理得:,即,解得∴

    ∴即与平面所成的角的正弦值为

     

    答案: 1.依题意,右焦点,当与轴垂直时,则点的坐标为,所以当时,直线方程为

    所以当时,直线方程为

    2.①当直线与轴垂直时,两点分别为和根据对称性可知,所以

    ②当直线不与垂直时,设直线的方程为联立方程组

    设,则则

     

    答案: 1.

    令,

    当时,单调递增

    当时,,单调递减

    所以,当时,有最大

    2.①有题意可知

    设剩余件产品恰有件是不合格品,则

    ②若对余下产品进行检查时,则质检费用与赔偿费用之和为元,因为,所以需要检验

    答案: 1.

    当时,,此时在上单调递减;

    当时,令,判别式

    当时,此时,,从而在上单调递减

    当时,此时,设的两根为,且,利用求根公式得

    当时,,从而,在和单调递减

    当时,,从而,此时在上单调递增

    综上所述,当时,在上单调递减

    当时,在和上单调递减,在上单调递增

    2.由可知,若有两个极值点,则,且的两根即为

    且满足韦达定理,易得,

    因,可得,即

    若要证,只须证,即证

    整理得

    构造函数,求导得

    因此在上单调递减

    从而成立,原式得证

    答案: 1.

    则,即

    所以的直角坐标方程为

    2.由题可知圆心坐标为,半径

    又曲线方程,关于轴对称,且曲线过圆外定点

    ∴当曲线与圆有且仅有个交点时,设曲线在轴的右半部分与圆相切于点,

    此时,

    则,

    ,即直线的方程为

    答案: 1.当时,则

    ∴当时,即

    又当时,满足

    综上:

    2.当时,恒成立

    即时有:

    即,两边平方化简可得:

    又,则成立

    函数可看作斜率为的直线,且在处取最大值

    则

    即的取值范围是

     
热门文章