欢迎来到高中生网资源网!

数学奇变偶不变符号看象限怎么理解

高中学习 时间:2023-01-17 00:34:17
  奇变偶不变,符号看象限,这句口诀意思是:在诱导公式中,如果你差的角度是90度也就是二分之派的整数倍,可以用此公式。
数学奇变偶不变符号看象限怎么理解
    奇变偶不变,符号看象限,这句口诀意思是:在诱导公式中,如果你差的角度是90度也就是二分之派的整数倍,可以用此公式。

    解释:奇变偶不变,符号看象限    对于kπ/2±α(k∈Z)的三角函数值,

    ①当k是偶数时,得到α的同名函数值,即函数名不改变;

    ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)

    第一象限内任何一个角的三角函数值都是“+”;

    第二象限内只有正弦、余割是“+”,其余全部是“-”;

    第三象限内只有正切、余切函数是“+”,弦函数是“-”;

    第四象限内只有余弦、正割是“+”,其余全部是“-”。

    诱导公式    公式一:设α为任意角,终边相同的角的同一三角函数的值相等

    sin(2kπ+α)=sinα(k∈Z)

    cos(2kπ+α)=cosα(k∈Z)

    tan(2kπ+α)=tanα(k∈Z)

    cot(2kπ+α)=cotα(k∈Z)

    公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系

    sin(π+α)=-sinα

    cos(π+α)=-cosα

    tan(π+α)=tanα

    cot(π+α)=cotα

    公式三:任意角α与-α的三角函数值之间的关系

    sin(-α)=-sinα

    cos(-α)=cosα

    tan(-α)=-tanα

    cot(-α)=-cotα

    公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系

    sin(π-α)=sinα

    cos(π-α)=-cosα

    tan(π-α)=-tanα

    cot(π-α)=-cotα

    公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系

    sin(2π-α)=-sinα

    cos(2π-α)=cosα

    tan(2π-α)=-tanα

    cot(2π-α)=-cotα

    公式六:π/2±α与α的三角函数值之间的关系

    sin(π/2+α)=cosα

    sin(π/2-α)=cosα

    cos(π/2+α)=-sinα

    cos(π/2-α)=sinα

    tan(π/2+α)=-cotα

    tan(π/2-α)=cotα

    cot(π/2+α)=-tanα

    cot(π/2-α)=tanα
热门文章