欢迎来到高中生网资源网!

高三数学知识点总结大全 数学公式整理归纳

高中学习 时间:2022-09-10 12:38:30
  有些数学题的解题方法,也可以用表格化难为易、驭繁为简。例如,用列表法解乘积或分式不等式,解含绝对值符号的方程或不等式,计算多项式的乘法,求整系数方程的有理根等等,都是很好的方法,这种记忆法在复习中尤其应该提倡。高三数学公式知识点三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α
高三数学知识点总结大全 数学公式整理归纳
    有些数学题的解题方法,也可以用表格化难为易、驭繁为简。例如,用列表法解乘积或分式不等式,解含绝对值符号的方程或不等式,计算多项式的乘法,求整系数方程的有理根等等,都是很好的方法,这种记忆法在复习中尤其应该提倡。

    

高三数学公式知识点

    三倍角公式

    sin3α=4sinα·sin(π/3+α)sin(π/3-α)

    cos3α=4cosα·cos(π/3+α)cos(π/3-α)

    tan3a=tana·tan(π/3+a)·tan(π/3-a)

    三倍角公式推导

    sin3a

    =sin(2a+a)

    =sin2acosa+cos2asina

    辅助角公式

    Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

    sint=B/(A^2+B^2)^(1/2)

    cost=A/(A^2+B^2)^(1/2)

    tant=B/A

    Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

    降幂公式

    sin^2(α)=(1-cos(2α))/2=versin(2α)/2

    cos^2(α)=(1+cos(2α))/2=covers(2α)/2

    tan^2(α)=(1-cos(2α))/(1+cos(2α))

    推导公式

    tanα+cotα=2/sin2α

    tanα-cotα=-2cot2α

    1+cos2α=2cos^2α

    1-cos2α=2sin^2α

    1+sinα=(sinα/2+cosα/2)^2

    =2sina(1-sin2a)+(1-2sin2a)sina

    =3sina-4sin3a

    cos3a

    =cos(2a+a)

    =cos2acosa-sin2asina

    =(2cos2a-1)cosa-2(1-sin2a)cosa

    =4cos3a-3cosa

    sin3a=3sina-4sin3a

    =4sina(3/4-sin2a)

    =4sina[(√3/2)2-sin2a]

    =4sina(sin260°-sin2a)

    =4sina(sin60°+sina)(sin60°-sina)

    =4sina_2sin[(60+a)/2]cos[(60°-a)/2]_2sin[(60°-a)/2]cos[(60°-a)/2]

    =4sinasin(60°+a)sin(60°-a)

    cos3a=4cos3a-3cosa

    =4cosa(cos2a-3/4)

    =4cosa[cos2a-(√3/2)2]

    =4cosa(cos2a-cos230°)

    =4cosa(cosa+cos30°)(cosa-cos30°)

    =4cosa_2cos[(a+30°)/2]cos[(a-30°)/2]_{-2sin[(a+30°)/2]sin[(a-30°)/2]}

    =-4cosasin(a+30°)sin(a-30°)

    =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

    =-4cosacos(60°-a)[-cos(60°+a)]

    =4cosacos(60°-a)cos(60°+a)

    上述两式相比可得

    tan3a=tanatan(60°-a)tan(60°+a)

    半角公式

    tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

    cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

    sin^2(a/2)=(1-cos(a))/2

    cos^2(a/2)=(1+cos(a))/2

    tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

    三角和

    sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

    cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

    tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

    两角和差

    cos(α+β)=cosα·cosβ-sinα·sinβ

    cos(α-β)=cosα·cosβ+sinα·sinβ

    sin(α±β)=sinα·cosβ±cosα·sinβ

    tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

    tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

    和差化积

    sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]

    sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]

    cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]

    cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]

    tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

    tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

    积化和差

    sinαsinβ=[cos(α-β)-cos(α+β)]/2

    cosαcosβ=[cos(α+β)+cos(α-β)]/2

    sinαcosβ=[sin(α+β)+sin(α-β)]/2

    cosαsinβ=[sin(α+β)-sin(α-β)]/2

    诱导公式

    sin(-α)=-sinα

    cos(-α)=cosα

    tan(—a)=-tanα

    sin(π/2-α)=cosα

    cos(π/2-α)=sinα

    sin(π/2+α)=cosα

    cos(π/2+α)=-sinα

    sin(π-α)=sinα

    cos(π-α)=-cosα

    sin(π+α)=-sinα

    cos(π+α)=-cosα

    tanA=sinA/cosA

    tan(π/2+α)=-cotα

    tan(π/2-α)=cotα

    tan(π-α)=-tanα

    tan(π+α)=tanα

    诱导公式记背诀窍:奇变偶不变,符号看象限

    

高三数学知识点总结

    1. 对于集合,一定要抓住集合的代表元素,及元素的确定性、互异性、无序性。

    2. 中元素各表示什么?

    注重借助于数轴和文氏图解集合问题。

    空集是一切集合的子集,是一切非空集合的真子集。

    3. 注意下列性质:

    (3)德摩根定律:

    4. 你会用补集思想解决问题吗?(排除法、间接法)

    的取值范围。

    5. 命题的四种形式及其相互关系是什么?

    (互为逆否关系的命题是等价命题。)

    原命题与逆否命题同真、同假;逆命题与否命题同真同假。

    6. 对映射的概念了解吗?映射f:AB,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?

    (一对一,多对一,允许B中有元素无原象。)

    7. 函数的三要素是什么?如何比较两个函数是否相同?

    (定义域、对应法则、值域)

    8. 求函数的定义域有哪些常见类型?

    9. 如何求复合函数的定义域?

    10. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

    11. 反函数存在的条件是什么?

    (一一对应函数)

    求反函数的步骤掌握了吗?

    (①反解x;②互换x、y;③注明定义域)

    12. 反函数的性质有哪些?

    ①互为反函数的图象关于直线y=x对称;

    ②保存了原来函数的单调性、奇函数性;

    13. 如何用定义证明函数的单调性?

    (取值、作差、判正负)

    如何判断复合函数的单调性?)
热门文章