欢迎来到高中生网资源网!

三角形的重心性质 有什么性质

高中学习 时间:2021-11-11 15:05:42
  三角形重心是三角形三条中线的交点。当几何体为匀质物体时,重心与形心重合。三角形的重心的性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:1。2.重心和三角形3个顶点组成的3个三角形面积相等。3.重心到三角形3个顶点距离的平方和最小。4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均。5.
三角形的重心性质 有什么性质
    三角形重心是三角形三条中线的交点。当几何体为匀质物体时,重心与形心重合。

    

三角形的重心的性质:

    1.重心到顶点的距离与重心到对边中点的距离之比为2:1。

    2.重心和三角形3个顶点组成的3个三角形面积相等。

    3.重心到三角形3个顶点距离的平方和最小。

    4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均。

    5.重心是三角形内到三边距离之积最大的点。

    6.三角形ABC的重心为G,点P为其内部任意一点,则3PG2=(AP2+BP2+CP2)-1/3(AB2+BC2+CA2)。

    7.在三角形ABC中,过重心G的直线交AB、AC所在直线分别于P、Q,则AB/AP+AC/AQ=3。

    8.从三角形ABC的三个顶点分别向以他们的对边为直径的圆作切线,所得的6个切点为Pi,则Pi均在以重心G为圆心,r=1/18(AB2+BC2+CA2)为半径的圆周上。

    9、G为三角形ABC的重心,P为三角形ABC所在平面上任意一点,则PA2+PB2+PC2=GA2+GB2+GC2+3PG2。

    

三角形的中心和重心

    三角形的中心:仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,这个心是三角形的中心。

    三角形重心:三角形三条中线的交点即为三角形重心。
热门文章