欢迎来到高中生网资源网!

正弦函数的对称轴

高中学习 时间:2020-03-30 11:54:44
  对称轴:关于直线x=(π/2)+kπ,k∈Z对称。正弦函数是三角函数的一种。对于任意一个实数x都对应着唯一的角,而这个角又对应着唯一确定的正弦值sinx,这样,对于任意一个实数x都有唯一确定的值sinx与它对应,按照这个对应法则所建立的函数,表示为y=sinx,叫做正弦函数。
正弦函数的对称轴
    对称轴:关于直线x=(π/2)+kπ,k∈Z对称。正弦函数是三角函数的一种。对于任意一个实数x都对应着唯一的角,而这个角又对应着唯一确定的正弦值sinx,这样,对于任意一个实数x都有唯一确定的值sinx与它对应,按照这个对应法则所建立的函数,表示为y=sinx,叫做正弦函数。

    

正弦函数基本性质

    定义域    实数集R,可扩展到复数集C

    值域    [-1,1](正弦函数有界性的体现)

    最值和零点    ①最大值:当x=2kπ+(π/2),k∈Z时,y(max)=1

    ②最小值:当x=2kπ+(3π/2),k∈Z时,y(min)=-1

    零值点:(kπ,0),k∈Z

    对称性    1)对称轴:关于直线x=(π/2)+kπ,k∈Z对称

    2)中心对称:关于点(kπ,0),k∈Z对称

    周期性    最小正周期:2π

    奇偶性    奇函数(其图象关于原点对称)

    单调性    在[-(π/2)+2kπ,(π/2)+2kπ],k∈Z上是增函数

    在[(π/2)+2kπ,(3π/2)+2kπ],k∈Z上是减函数

    

对称轴和对称中心求法

    正弦函数有最基本的公式:y=Asin(wx+ψ),对称轴(wx+ψ)=kπ+?π(k∈z),对称中心(wx+ψ)=kπ+(k∈z),解出x即可。

    例子:y=sin(2x-π/3),求对称轴和对称中心

    对称轴:2x-π/3=kπ+π/2,x=kπ/2+5π/12

    对称中心:2x-π/3=kπ,x=kπ/2+π/6,对称中心为(kπ/2+π/6,0)
热门文章