欢迎来到高中生网资源网!

log函数的图像

高中学习 时间:2019-12-20T16:26:12
对数函数性质是:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1...
log函数的图像
  对数函数性质是:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1...

  

  对数函数性质  

  定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}。

  值域:实数集R,显然对数函数无界

  定点:对数函数的函数图像恒过定点(1,0)

  单调性:a>1时,在定义域上为单调增函数

  0<a<1时,在定义域上为单调减函数

  奇偶性:非奇非偶函数

  周期性:不是周期函数

  对称性:无

  最值:无

  零点:x=1

  基本性质  1、a^(log(a)(b))=b

  2、log(a)(a^b)=b

  3、log(a)(MN)=log(a)(M)+log(a)(N)

  4、log(a)(M÷N)=log(a)(M)-log(a)(N)

  5、log(a)(M^n)=nlog(a)(M)

  6、log(a^n)M=1/nlog(a)(M)

  其他性质  1.换底公式

  log(a)(N)=log(b)(N)÷log(b)(a)

  2.log(a)(b)=1/log(b)(a)

  3.对数函数的图象都过(1,0)点。

  4.对于y=log(a)(n)函数,

  ①,当0<a<1时,图象上函数显示为(0,+∞)单减。随着a的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1。

  ②当a>1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1。

  5.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称。
热门文章